Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The origin of rupture segmentation along subduction zone megathrusts and linkages to the structural evolution of the subduction zone are poorly understood. Here, regional-scale seismic imaging of the Cascadia margin is used to characterize the megathrust spanning ~900 km from Vancouver Island to the California border, across the seismogenic zone to a few tens of kilometers from the coast. Discrete domains in lower plate geometry and sediment underthrusting are identified, not evident in prior regional plate models, which align with changes in lithology and structure of the upper plate and interpreted paleo-rupture patches. Strike-slip faults in the lower plate associated with oblique subduction mark boundaries between regions of distinct lower plate geometry. Their formation may be linked to changes in upper plate structure across long-lived upper plate faults. The Juan de Fuca plate is fragmenting within the seismogenic zone at Cascadia as the young plate bends beneath the heterogeneous upper plate resulting in structural domains that coincide with paleo-rupture segmentation.more » « less
-
Abstract P‐to‐S‐converted waves observed in controlled‐source multicomponent ocean bottom seismometer (OBS) records were used to derive theVp/Vsstructure of Cascadia Basin sediments. We usedP‐to‐Swaves converted at the basement to derive an empirical function describing the averageVp/Vsof Cascadia sediments as a function of sediment thickness. We derived one‐dimensional intervalVp/Vsfunctions from semblance velocity analysis ofS‐converted intrasediment and basement reflections, which we used to define an empiricalVp/Vsversus burial depth compaction trend. We find that seaward from the Cascadia deformation front,Vp/Vsstructure offshore northern Oregon and Washington shows little variability along strike, while the structure of incoming sediments offshore central Oregon is more heterogeneous and includes intermediate‐to‐deep sediment layers of anomalously elevatedVp/Vs. These zones with elevatedVp/Vsare likely due to elevated pore fluid pressures, although layers of high sand content intercalated within a more clayey sedimentary sequence, and/or a higher content of coarser‐grained clay minerals relative to finer‐grained smectite could be contributing factors. We find that the proto‐décollement offshore central Oregon develops within the incoming sediments at a low‐permeability boundary that traps fluids in a stratigraphic level where fluid overpressure exceeds 50% of the differential pressure between the hydrostatic pressure and the lithostatic pressure. Incoming sediments with the highest estimated fluid overpressures occur offshore central Oregon where deformation of the accretionary prism is seaward vergent. Conversely, landward vergence offshore northern Oregon and Washington correlates with more moderate pore pressures and laterally homogeneousVp/Vsfunctions of Cascadia Basin sediments.more » « less
An official website of the United States government
